

D PÔLE DE COMPÉTITIVITÉ CHIMIE, INDUSTRIES DE PROCÉDÉS ET ENVIRONNEMENT

GREENDEAL, CIRCULAR ECONOMY AND INDUSTRIAL ECOLOGY SYMPOSIUM

Circular economy in tire and textile industries

Cluster for Chemical, Process industries & Environnement

D PÔLE DE COMPÉTITIVITÉ CHIMIE, INDUSTRIES DE PROCÉDÉS ET ENVIRONNEMENT

GREENDEAL, CIRCULAR ECONOMY AND INDUSTRIAL ECOLOGY SYMPOSIUM

Circular economy in tire and textile industries

Textile waste

- Textile waste generation: Over 15 kilograms of textile waste per person is generated annually in Europe, with discarded clothes and home textiles accounting for around 85% of total waste.
- Environmental impact: The primary destinations for textile waste are incineration and landfills, both inside and outside Europe, contributing to environmental harm.
- **Opportunities for transformation:** The textile waste issue presents an opportunity to create a sustainable new industry by turning waste into valuable resources.

Fiber-to-fiber recycling

- Turning textile waste into new fibers for use in clothes or other textile products.
- Existing technologies like mechanical recycling of cotton are well-established.
- Other technologies, like chemical recycling of polyester, have been subject to intense R&D and are on the brink of commercialization.
- **Potential for recycling 70% of textile waste** once fiber-tofiber recycling is fully mature.

Source: Scaling textile recycling in Europe—turning waste into **** axeLera** value – July 14, 2022 McKinsey & Company

Barriers to scaling fiber-to-fiber recycling

- Collection, sorting, and preprocessing challenges limit recycling capacity.
- Collection rates currently range from 30-35%.
- High-quality sorting and preprocessing technologies are still under development.
- Fiber composition and purity requirements limit recyclability (e.g., elastane and metal parts like zippers in jeans).

Collaboration and innovation will be key

**** C * * E * * P

Co-funded by the European Union Project Number : 101036908

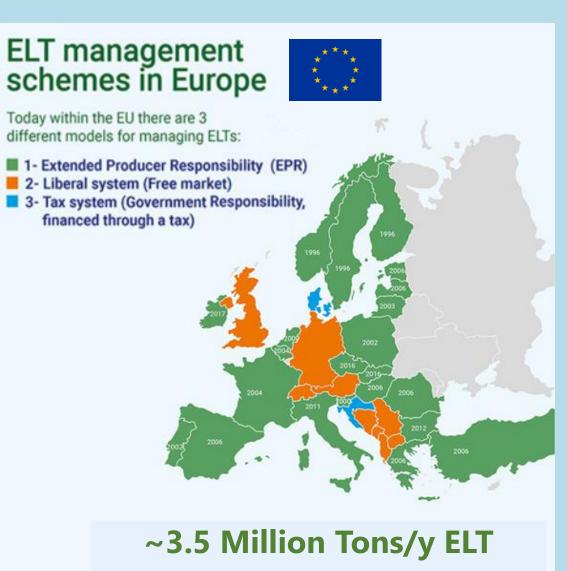
Source: Scaling textile recycling in Europe—turning waste into 😪 **axeLeRa** value – July 14, 2022 McKinsey & Company

A well-organized field

EU Regulatory Framework : Landfill Directive

95% Collected

40% Energy valorization



60% Material valorization

In Europe, more than half of these are exported to other countries.

The number in the country refers to the year of publication of Extended Producer Responsibility Law

Source: https://www.etrma.org/key-topics/circular-economy/

Landfill Directive (EC Directive 1999/31)

6

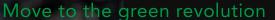
N

Challenge of ELT valorisation in the next years ?

Regulation constraints for granulates use for artificial turf, sports & children playground - Microplastic ANNEX XVII

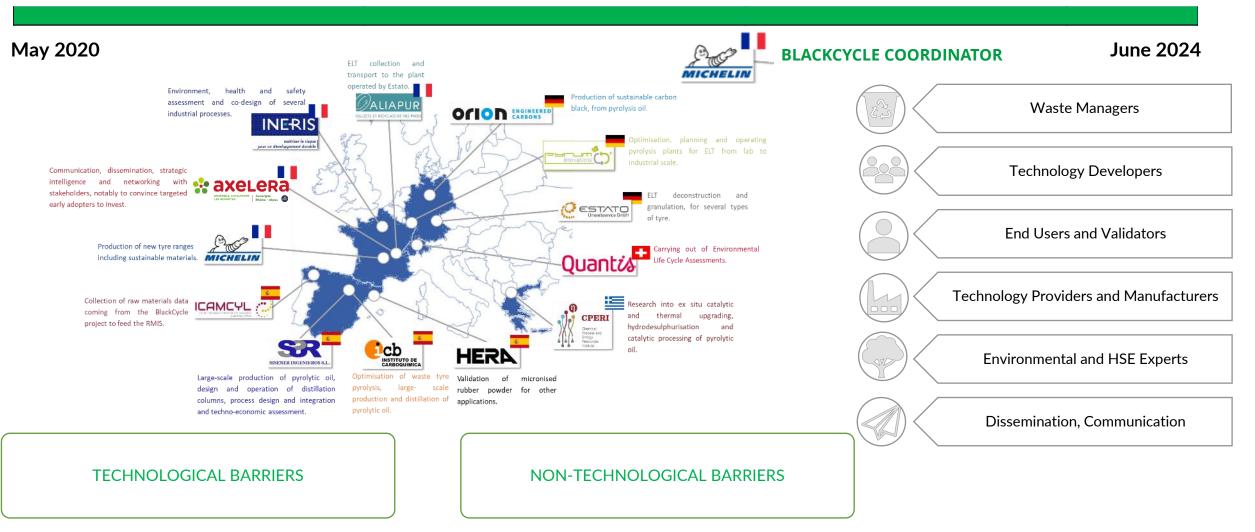
Exportation and Energy Valorisation constraints

Only a limited amount of secondary raw material that can be reused in the tyre industry.


Offering a great potential for material recovery, which is only partially exploited

BLACKCYCLE project aims to enable a massive circular economy of tyres

A MAJOR EUROPEAN PROJECT FOR RECYCLING END-OF-LIFE TYRES INTO NEW TYRES


POWERFUL Tool to move to the Tyre revolution!!!

Margarita Dorato Technical Director Blackcycle

May 2020 June 2024

7 Industrial & Start up Partners, 5 Research Centers and an Innovation cluster gathered in a EU Consortium in 5 Countries

BLACK CYCLE is a project funded by the European Commission - Project Number : 869625

BLAC

BLACKCYCLE aims at creating, developing and optimising a full Value Chain


TRL : 4 to 7

BLACK CYCLE is a project funded by the European Commission - Project Number : 869625

BLACKCYCLE aims at creating, developing and optimising a full Value Chain

ELT Deconstruction process to produce specified rubber granulates composition for MRP and pyrolysis application

2 new fully automatic tire deconstructions patented with a validated business model and environmental impact

IRG

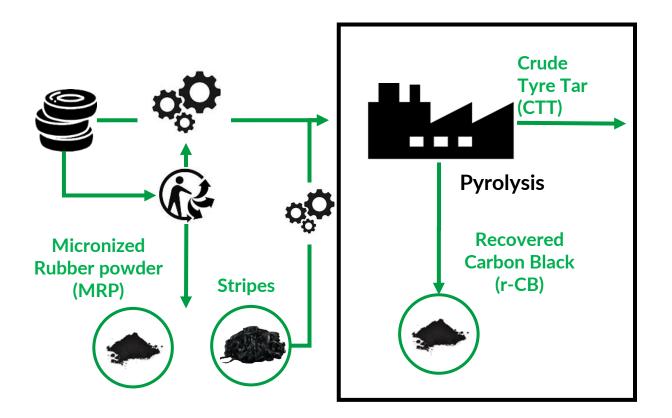
Validated at TRL6 by treatment of 80 tn of ELT

ORC

PC and TT Tread stripes

Innerliner

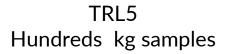
Tread


I-MRP Micronized Rubber Powder

BLACKCYCLE aims at creating, developing and optimising a full Value Chain

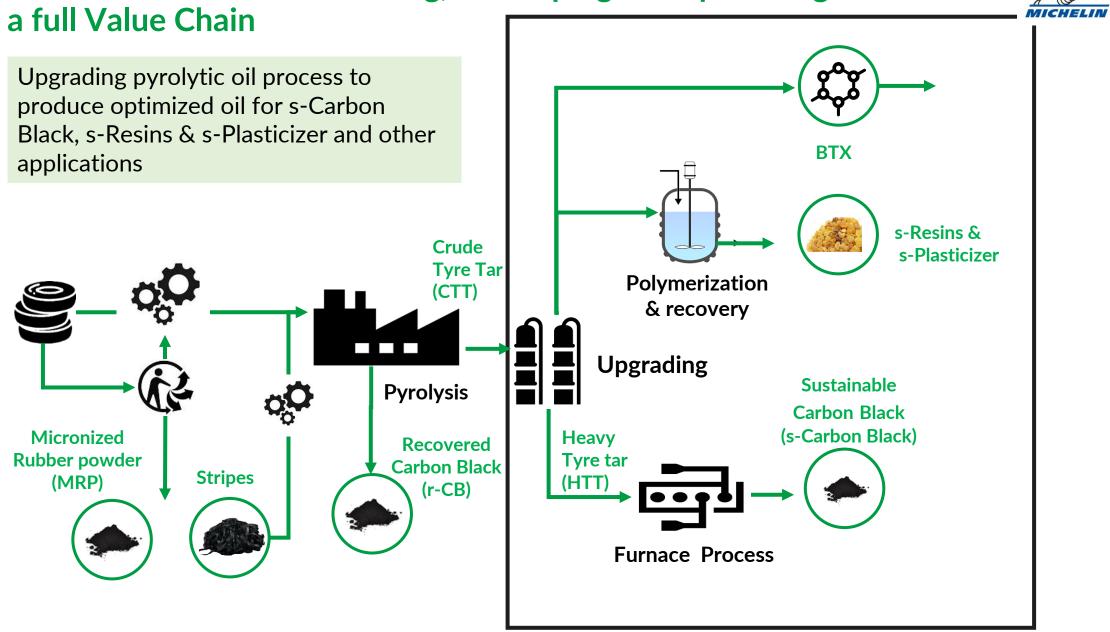
Optimized pyrolysis process to produce high quality r-CB and optimized pyrolysis oil

To develop 2 pyrolysis technologies to produce pyrolytic oil and r-CB



Depending on the quality of the of ELTs granulates and the operating conditions of pyrolysis

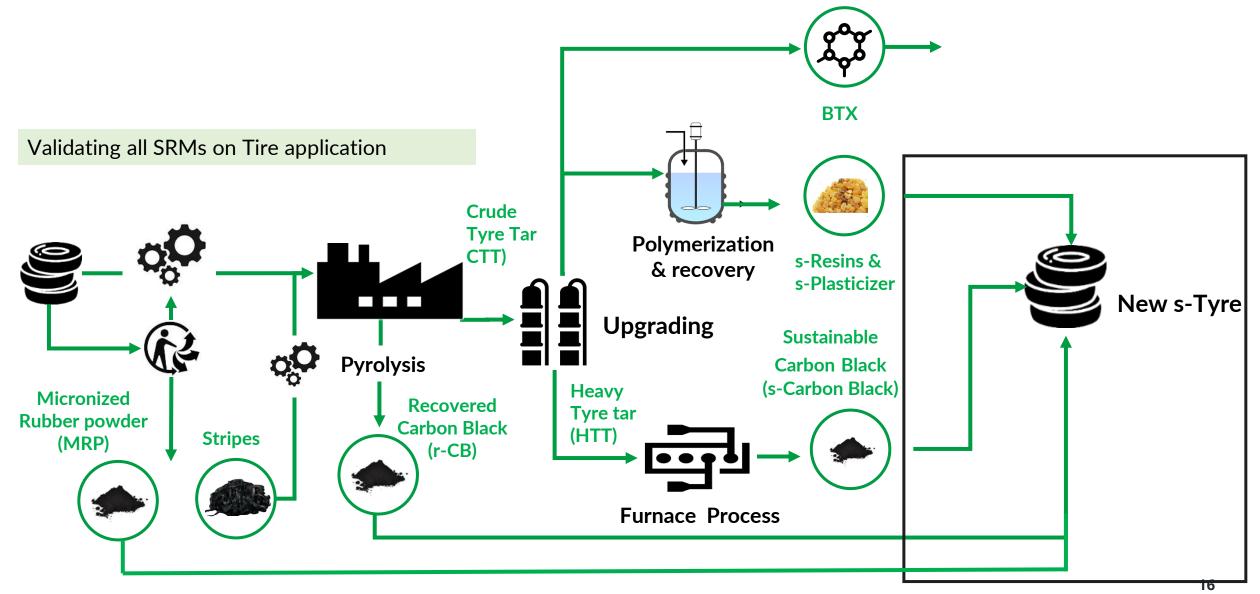
Auger Reactor



TRL7 - dozens tons samples

Moving Bed Reactor

TRL7 - dozens tons samples 14



BLACKCYCLE aims at creating, developing and optimising

RI ACH

BLACKCYCLE aims at creating, developing and optimising a full Value Chain

Blackcycle project validated 3 Grades of s-CB made on a TRL 7 equipment

Value chain scale-up validation at TRL7

Collaborative success

The Blackcycle Secondary Materials could be used to reach more than 20% of recycled rate content in tyres while keeping the same performances

s-CB could be used at 100% in replacement of corresponding ASTM grades even for the most technical CB.

r-CB could replace parcialy some ASTM grades in rubber mixes Truck Tread feedstock has a positive impact

Innerliner MRP can be used in virgin innerliner rubber composition in **significant quantity**

s-Resin has be proven to act as a real resin in a rubber tread

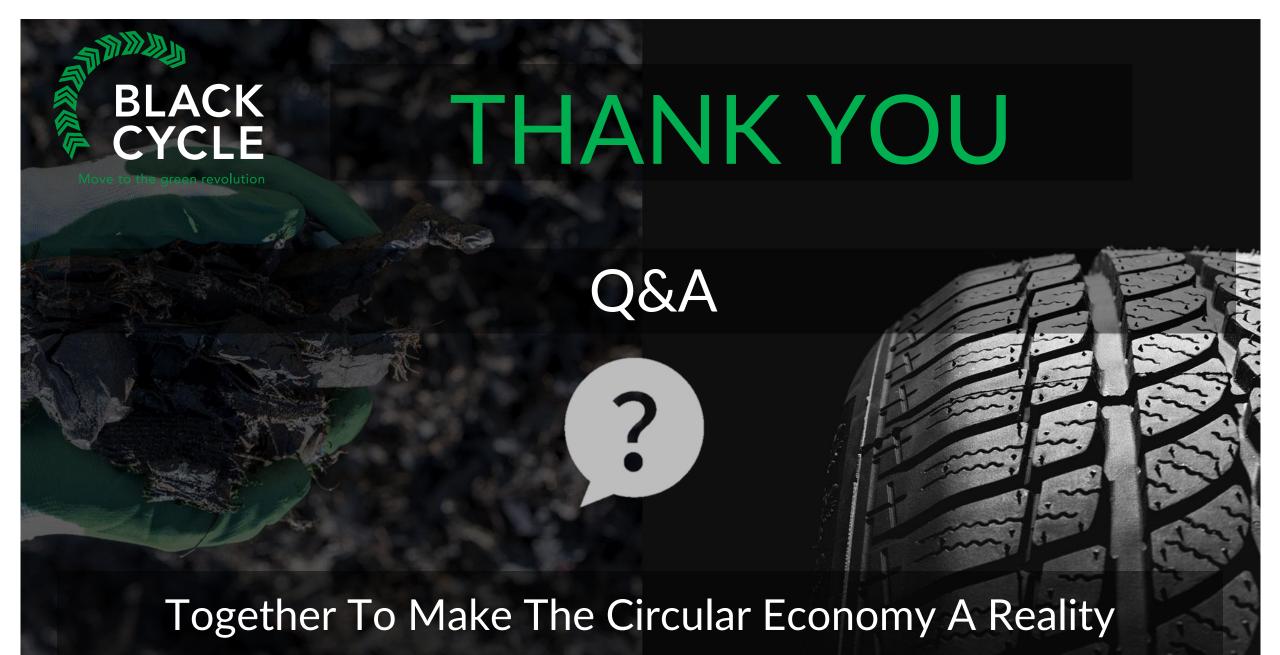
BLACKCYCLE is internationally recognized and has won 3 awards

Recircle Award November 2023

Tire Tech Award March 2024

The French Association Competitiveness Clusters Award September 2024

"Best Recycling Research Project"


This award recognizes the excellence of the work done within the **project Blackcycle** and its results that will greatly contribute to the circular economy.

"Environmental Achievement of the Year"

Industry Contribution category' award, at this year's Tire Technology Awards for Innovation and Excellence.

"Impact"

"The project has delivered considerable impacts for the cluster members involved in their tyre recycling project"

White white cycle

white cycle

Circular economy of PET from Complex Wastes (Tires, Clothes, Hoses) to TRL 6-8

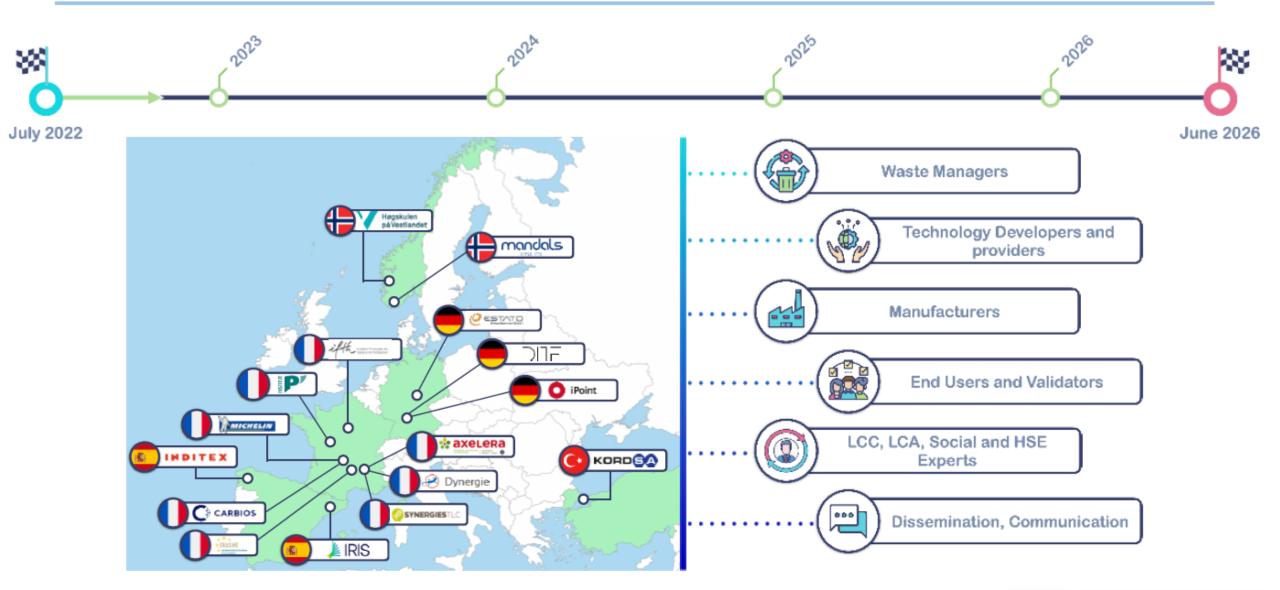
Call: HORIZON-CL6-2021-CIRCBIO-01 Duration: 48 months Estimated project cost: 9,541,261.25€ Requested EU contributions: 7,080,251.50€

Coordinator : MICHELIN / Olivier Cardon olivier.cardon@michelin.com

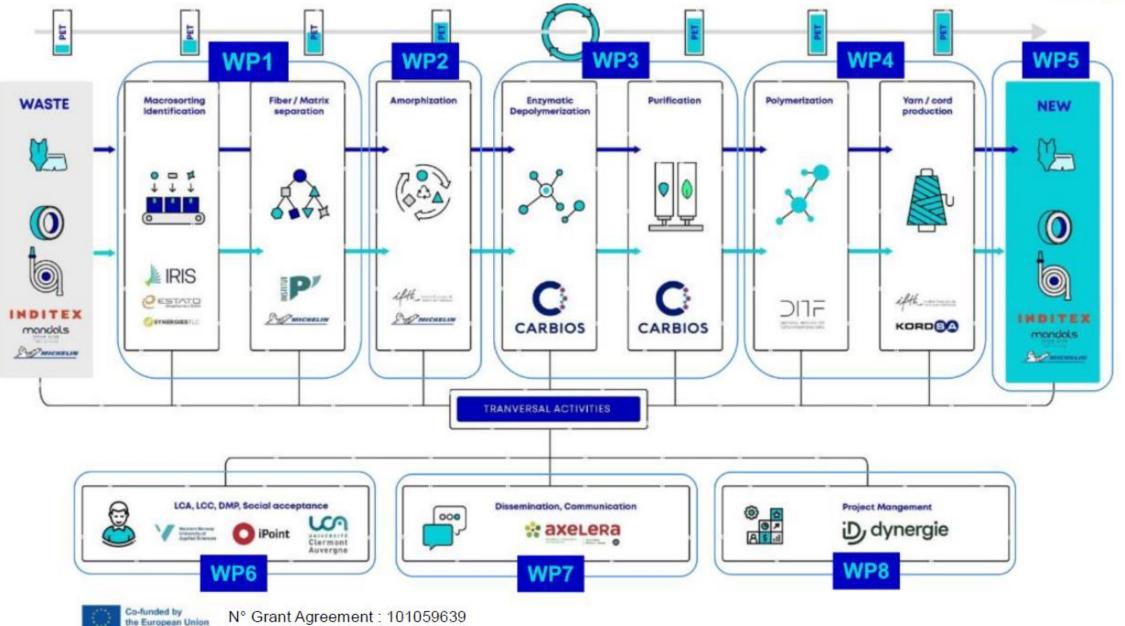
Project website : <u>https://www.whitecycle-project.eu</u> Project LinkedIn : <u>https://www.linkedin.com/company/whitecycle</u>

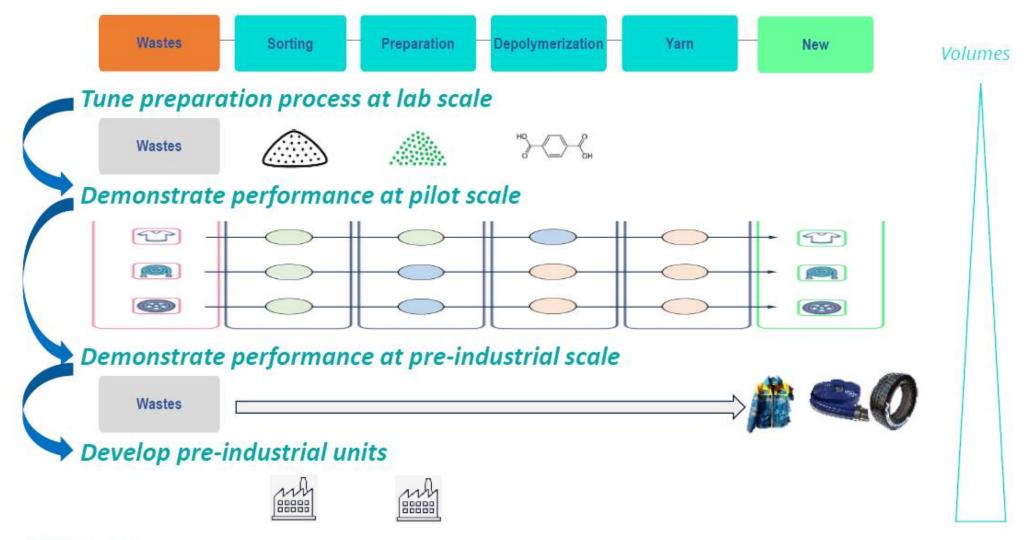
1850t multilayer clothing

Feedstock for 2 Mt of r-PET / year



A TEAM of Industrial Partners, Research Centers and an Innovation Cluster from 5 countries, united to develop PET recycling from complex waste




A united multiskilled consortium to cover the overall value chain

A complete development program from lab scale to pre-industrial units

Preparation of complex feedstocks : a technological challenge

Complex feedstocks contain not only PET, but various compounds that can perturbate fabrication processes

Technical / multilayer garments :

- Reflective tapes
- Coatings
- Puff
- Dye
- Hard points : knobs, zips
- Etc.

Technical articles (flexible hoses and tyres):

- Rubber
- Thermoplastics
- Other fibers
- Fillers
- Etc.

Preparation steps are needed to :

- Sort feedstocks with a content of 80% PET or more
- Prepare the material to enable full depolymerization

select high PET content articles in complex garment feedstocks

=> Upgraded optical sorting technology by 准 IRIS

Sorting of material

Whitcycle developed an innovative sorting prototype (TRL5) based on **IRIS** identification technology

Operator gets information on all layers composition for each part of the garment (visualization at pixel size)

garments with 80% or more PET

Innovative electrostatic sorting developed by

Whitecycle prototype based on P' patented technology

PET fibers are collected on electrodes

Tyre material aspect before and after electrostatic sorting

cvcle

Sorting of material

highly promising technologies to isolate high PET content materials

Multi-layer garments

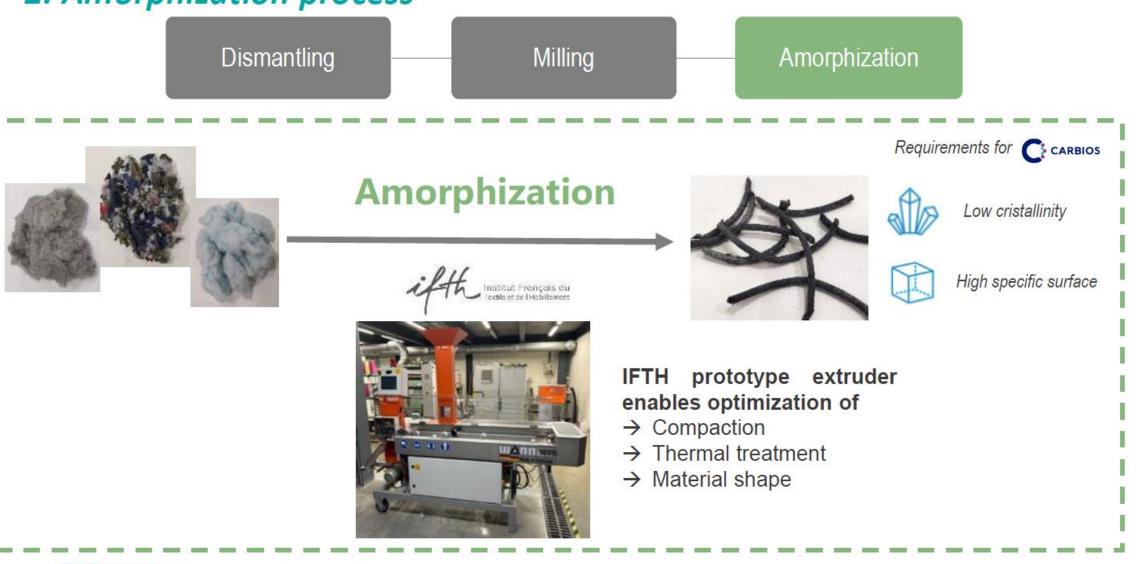
IRIS Sorting

Tyre material

Hoses material

PPRIME Purification

Pretreatment of the material


1. Dismantling and milling process for complex / multi-layer garments

Pretreatment of the material 2. Amorphization process

Material pre-treatment

=> Amorphization technology developed for the 3 feedstocks

Multi-layer garments

Flexible hoses fiber

Analysis and dissemination Integration into the European scientific and business ecosystems

Data management

Lifecycle assessment

Lifecycle costs

Social impact

Social acceptance

Dynamic modeling

Strategic intelligence

Dissemination seminars

Discussion with early adopters

Dissemination toolkit

Training development

Thanks!

Follow #WhiteCycle

From Life Cycle Sustainability Assessment to Cross matrix impact, the project Whitecycle

Tipawan DURAND, Arnaud DIEMER University of Clermont Auvergne, CERDI (CNRS-IRD)

Objective:

••••

To define a step-wise method for selecting key indicators considering economic, environmental and social impact, using SWOT and cross-impact matrix analysis within innovative processes.

SWOT + CIM METHOD

SWOT

Strengths, Weaknesses, Opportunities, Threats

Widely used by organizations to analyze internal and external environments, particularly during periods of strategic decision-making (Rozmi et al., 2018; Wu, 2020)

Main Strengths	Main Weaknesses
Main Opportunities	Main Threats
Main opportunities	Wall Hileads

CIM

The Cross-Impact Matrix

A tool used to forecast the potential consequences of a decision or event. It is based on the idea that one event can cause a chain reaction of other events.

With the event i,

- S = The expected impact
- E = Event or indicator or variable
- a = Impact of event
- b = Conditional probability
- P = An initial probability vector

 $\begin{bmatrix} E_1 & E_2 & E_3 \\ \\ E_1 & a_{12}b_{12} & a_{13}b_{13} \\ \\ a_{21}b_{21} & a_{22} & a_{23}b_{23} \\ \\ a_{31}b_{31} & a_{32}b_{32} & a_{33} \end{bmatrix} \begin{bmatrix} P(E_1) \\ P(E_2) \\ P(E_3) \end{bmatrix}$ $= \begin{bmatrix} a_{11}P(E_1) + (a_{12}b_{12})P(E_2) + (a_{13}b_{13})P(E_3) \\ (a_{21}b_{21})P(E_1) + a_{22}P(E_2) + (a_{23}b_{23})P(E_3) \\ (a_{31}b_{31})P(E_1) + (a_{32}b_{32})P(E_2) + a_{33}P(E_3) \end{bmatrix} = S$

SWOT + CIM METHOD

Type 1. Qualitative Description of the trend-scenario. (Ratcliffe, 2001).

Type 2. Trend Value Assessment.

(e.g. Gordon et al., 1968; Weerakkoday et al., 2003).

Type 3. The Conditional Probability.

(e.g., Dalkey, 1972; Enzer, 1972; Gordon, 1994)

Type 4. The Conditional Probability method combines both the level of impacts and their probability of occurrence.

(KENNETH C. , 2008)

By considering conditional probability of occurrence, given the impact to preceding events and making a matrix procedure, the method provides a more comprehensive understanding of future development.

The ref. paper presents the procedure by the study of indicators impact to the family welfare.

Research design

This research will utilize a multi-step approach to explore the potential impact to a WHITECYCLE project.

- Economic impact
- Environmental impact
- Social impact

The research design proceeds in three steps:

(1) Indicator Identification

(2) SWOT Matrix Development

(3) Cross-Impact Matrix Analysis

Step 1: Indicator Identification

Analyze relevant frameworks concerned with Circular Economy principles to identify key indicators impacting the economy & financials, environment, and society for the whitecycle projects. These frameworks include:

- Company level reporting (i.e., EPD, 3P)
- Cost-Benefit Analysis (CBA)
- Sustainable Development Goals (SDGs)
- Life Cycle Sustainability Assessment (LCSA)

LCSA = ELCA + LCC + SLCA (Kloepffer., 2008)

ELCA = Environmental Life Cycle Assessment

LCC = Life Cycle Costing

SLCA = Social Life Cycle Assessment

Relevant frameworks

Example of List of ELCA., (OECD, 2020)

Subcatagory	Sector	Indicator	Unit	Year	Name of the study
					Towards a Model of Circular Economy
					for Italy - Overview and Strategic
Efficiency	Energy	Energy efficiency	NA	2017	Framework
					1st Roadmap Paris Circular Economy
Emissions	Air	CO2 avoided as a consequence of recovery and reuse of materials	NA	2017	Plan
					Circular Amsterdam – A Vision and
					Action Agenda for the City and
Emissions	Air	CO2 emissions reduction	ktons	2016	Metropolitan Area
					The Green and Circular Economy of
Emissions	Air	GHG Emissions	t CO2/year	2019	Barcelona City Council
					National Strategy for the Circular
Emissions	Air	Greenhouse gas reduction	%	2019	Economy
					Agenda for the Development of the
					Circular Economy in Navarra 2019-
Emissions	Air	Total Greenhouse Gas Emissions	sand tonnes	2019	2030
Output					
material					Paris Circular Economy Plan: 2017-
process	Waste	Tons of waste avoided	Tonnes	2017	2020
Output					
material					
process	Waste	Solid waste generated	Tonnes	2018	Circular Bilbao and Bizkaia
Output					
material					National Strategy for the Circular
process	Waste	Recycling rate	%	2019	Economy

white

Relevant frameworks

The LCC of WHITECYCLE products will study three input cost categories and three output categories:

Example of LCC., (WHITECYCLE project, 2023)

- 1. Input: Material costs (e.g., feedstock input)
- 2. Input: Labour cost (e.g., personal operating the sorting machines)
- 3. Input: Energy cost (e.g., contracts setting a price for a kWh)
- 4. Output: Waste handling (e.g., hazardous and non-hazardous waste)
- 5. Output: CO₂ expenses (e.g., carbon tax/price)
- 6. Output: PET value

Relevant frameworks

 \bullet \bullet \bullet

Example of List of SLCA., (JRC (2015, p. 44))

TAKEHOLDER	SUBCATEGORY	INDICATOR	Unit of measuremen
		Children in employment, male (% of male children ages 7-14)	%
	CHILD LABOUR	Children in employment, female (% of female children ages 7-14)	%
		Children in employment, total (% of all children agess 7-14)	% Text
	FORCED LABOUR	Evidence of forced labour	lext
		Frequency of forced labour	10
	FAIR SALARY	Living wage, per month	local currency
	FAIR SALARY	Minimum wage, per month	local currency
		Sector average wage, per month	local currency
		Hours of work per employee, per day	h
	WORKING TIME	Hours of work per employee, per week	h
		Standard weekly hours	h
		Standard daily hours	h
		Occurrence of discrimination	Text
VORKERS	DISCRIMINATION	Women in the labour force (% of economically active female population)	%
VORKERS		Men in the labour force (% of economically active male population)	%
		Ratio of salary of women wages to men	10
		Accident rate at workplace	#/100,000 workers
		Fatal accidents at workplace	#/100,000 workers
	HEALTH AND SAFETY	Occupational risks	Text
		DALY due to indoor and outdoor air and water pollution	DALY/1,000 persons
		Presence of sufficient safety measures	# of security incident
	COCIAL DENERITE LECAL ICCUES	Social security expenditures out of the total GDP	%
	SOCIAL BENEFITS, LEGAL ISSUES	Evidence of violations of laws and employment regulations	#/yr h
		% of workers with a contract	%
		Trade union density (% of employees organised in trade unions)	%
	FREEDOM OF ASSOCIATION, COLLECTIVE	Right of association	interest voltare
	BARGAINING, RIGHT TO STRIKE	Rigth of collective bargaining	index value
		Right to strike	index value
		Existence of standard rates	Y/N
		Level of industrial water use (% of total withdrawal)	%
		Level of industrial water use (% of total actual renewable)	%
	ACCESS TO MATERIAL RESOURCES	Extraction of material resources (fossil fuels, biomass, ores, minerals)	t/capita
		Presence of certified environmental management systems	#
		Description of (potential) material resource conflicts	Text
		Presence of indigenous population	Y/N
OCAL	RESPECT OF INDIGENOUS RIGHTS	Human rights issues faced by indigenous people	Text
		Respect of indigenous rights	Text
OMMUNITY		Pollution level of the country	Index value
	SAFE AND HEALTHY LIVING CONDITIONS	Contribution of the sector to environmental load	Text
		Drinking water coverage (% of the population)	%
		Sanitation coverage (% of the population)	%
		Unemployment rate in the country	%
	LOCAL EMPLOYMENT	Work force hired locally	%
		Percentage of spending on locally based suppliers	%
	MIGRATION	Migrant workers in the sector	%
	CONTRIBUTION TO ECONOMIC	Economic situation of the country	index value
	DEVELOPMENT	Contribution of the sector to economic development (in % of total GDP)	%
		Public expenditure on education (% of GDP)	%
	TRUCKTON	Illiteracy rate, male (% of male population)	%
0.000	EDUCATION	Illiteracy rate, female (% of female population)	%
OCIETY		Illiteracy rate, total (% of total population)	%
	UTALTU AND CATCO	Health expenditure out of the total GDP of the country	%
	HEALTH AND SAFETY	People affected by natural disasters (as % of population)	%
		Life expectancy at birth	Years
	PREVENTION AND MITIGATION OF		1000
	CONFLICTS	Risk of conflicts with regard to the sector	Text
		Presence of anti-competitive behaviour or violation of anti-trust and monopoly	-
	FAIR COMPETITION	legislation	Text
		Presence of policies to prevent anti-competitive behaviour	Y/N
	CORRUPTION	Corruption index of country	index value
ALUE CHAIN		Evidence of an active involvement of the enterprises in corruption and bribery	%
ACTORS		Presence of codes of conduct that protect human rights of workers among	
	PROMOTING SOCIAL RESPONSIBILITY	suppliers	index value
		Membership in an initiative that promotes social responsibility along the supply	100
		chain (number of enterprises)	#
	SUPPLIER RELATIONSHIPS	Interaction of the companies with suppliers (payment on time, sufficient lead	
		time, reasonable volume fluctuations, appropriate communication)	Text
	HEALTH AND SAFETY	Presence of management measures to assess consumer health and safety	Y/N
CONSUMERS	TRANSPARENCY	Presence of certifications or labels for the product/sites sector	Y/N
	END OF LIFE RESPONSIBILITY	Strength of national legislation covering product disposal and recycling	Text

Step 1: Indicator Identification

Appendices

Specific Indicator

-Raw material

(RMC)

consumption indicator

-Resource productivity

-Generation of waste excluding major

mineral wastes per

-Waste generation per

-Trade in recyclable

-Gross value added

related to circular economy sectors

raw materials

GDP unit

capita

Framework

Circular

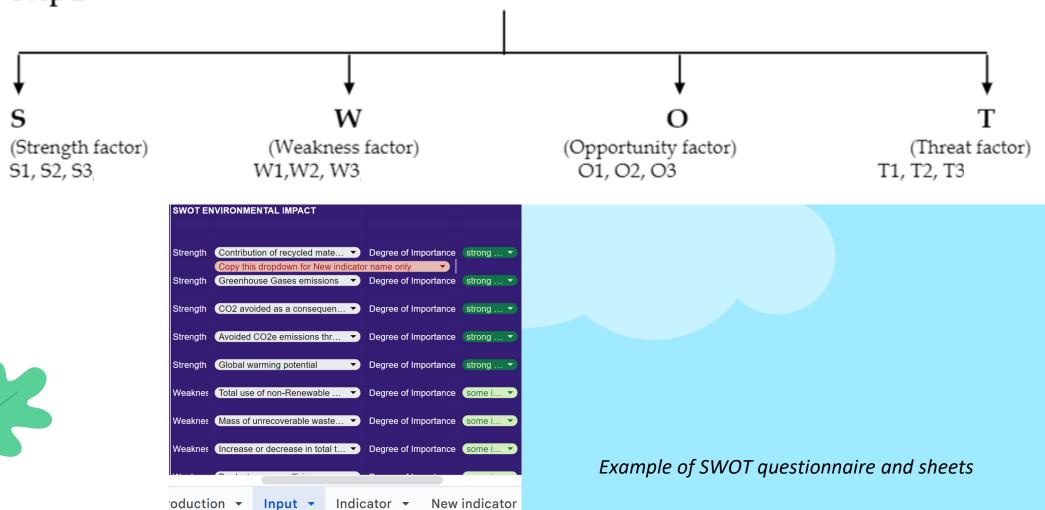
Economy

T					Table A2	2 (Appendix B): Enviro	nment-related indicate	ors
TableA1 (Appendix A): Econo	my-related indic	ators	Framework	Specific Indicator	Unit	Year	Reference of the
icator	Unit	Year	Reference of the study					study
rial on indicator oroductivity	-Tonnes per capita -Currency/physical	2024	Eurostat	Circular Economy	-Percentage increase in materials recovery (t) and organic recovery (t) -Tons of waste avoided	-Tonnes	2017	Paris Circular Economy Plan: 2017-2020
n of waste najor stes per	unit, euro/Kilogram -Kg per thousand euro				-Tonnage of waste diverted via repair, reuse, recovery and upcycling activities (recycling centers, artisans, second-hand	-Tonnes		
eration per	-Kilogram per capita.				goods stores, fab labs, etc.) -Tons of waste			
cyclable als e added	-Trade value in thousand euro.				avoided through the donation and reselling scheme to the city			
ircular ectors	-Million euro					-Tonnes		

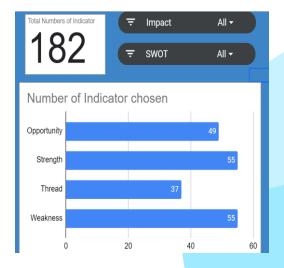
	9	\lor	$\langle \! \! \! \! \! \rangle$
			U

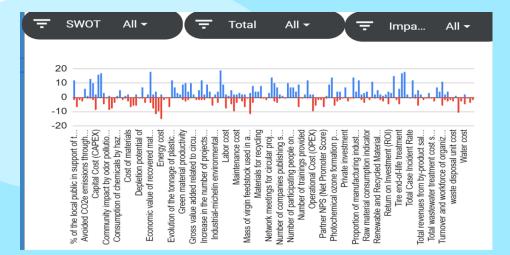
white cycle

	Table A3 (Appendix C): Social-related indicators									
Framework	Specific Indicator	Unit	Year	Reference of the study						
SDG	-Average hourly earnings of female and male employees, by occupation, age and persons with disabilities	-Euro		Target 8.5.1						
	-Increase of labor share of GDP due to the project	-Number		Target 10.4.1						
	-Level of safe working conditions	-Level		Target 8.8.2						
	-R&D personnel by sector	-%		Target9						


Total indicators: 182

- **Environmental indicator: 87** •
- Economic indicator: 55 •
- Social indicator: 40 •




Vote SWOT indicator of 3 domains

Step 2

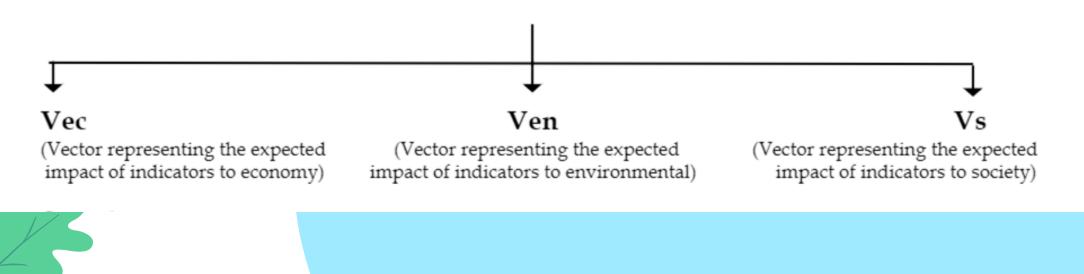
SWOT Dashboard

white cycle

SWOT Social-re	elated Summary	SWOT Economy-related Summary
Main Strengths	Main Weaknesses	Main Strengths Main Weaknesses
Number of new jobs	Employee Engagement rate	New revenue models related to the circular economy Operational Cost (OPEX)
Increase number of partnerships with municipalities/distribution	Diversities and Inclusion Management Index	Avoided cost for the waste disposal Capital Cost (CAPEX)
Number of connection between companies	Number of technologies transferred	Investment in research for increasing circular knowledg and expertise Investment to maintain product quality
Main Opportunities	Main Threats	Main Opportunities Main Threats
Worker skill development	Local community acceptance, such as complaints from society	Material import dependency Energy cost
Numbers of articles published creating positive publicity	Cost of training and education programmes per employee	Total cost savings due to avoided GHG emissions Material cost
Improvement in well-being of worker	Turnover and workforce of organizations working in the circular economy	Gross value added in environmental goods and services sectory Labor cost

SWOT Environment-related Summary							
Main Strengths	Main Weaknesses						
Tons of waste avoided	Energy (and Exergy) Consumption						
CO2 emission avoided as a consequence of recovery and reuse of materials	f Mass of unrecoverable waste generated when producing recycled feedstock for a product						
Circular material use rate	Increase in total thermal energy consumption						
Main Opportunities	Main Threats						
Tonnage of waste diverted via reuse and upcycling activities	Acidification potential						
Evolution of the tonnage of plastics collected the city	in Product (with recycled material) end-of-life treatment						

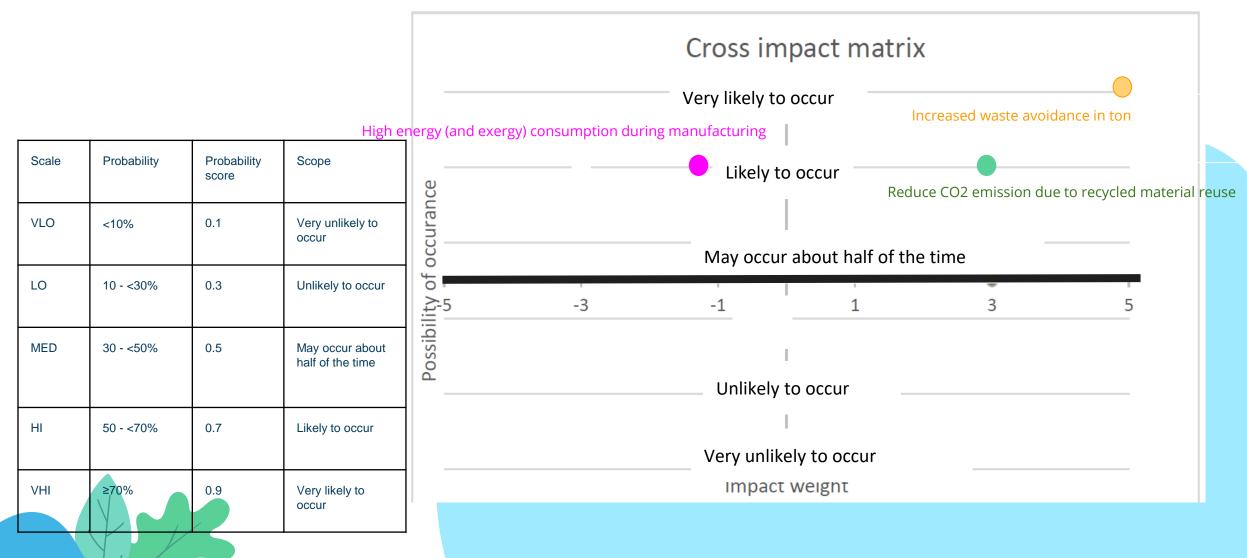
white cycle


Recycling rate of municipal waste

Eutrophication potential(freshwater aquatic)

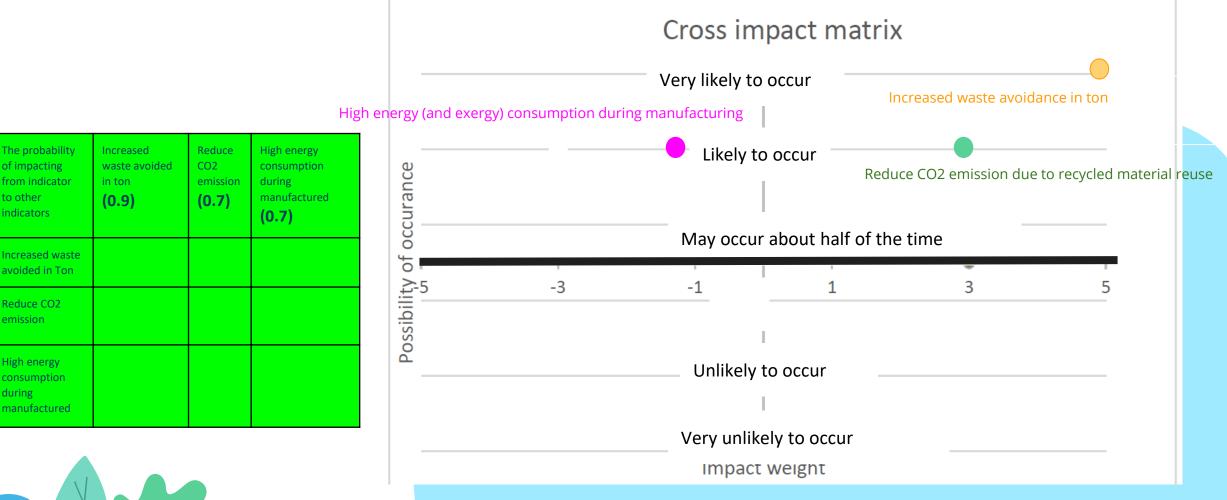
Review important indicators by the most vote score (whatever SWOT)
Identify impact and occurrence level to obtain cross-impact matrix

Step 3



What is impact weight and a probability of occurrence of these indicators can be happened in the project?

Affect this/ How does this	Increased waste avoided in Ton	Reduce CO2 emission	High energy consumption during manufactured				3		2	1	1 2 3	
Increased waste avoided in Ton	5			curance	-5: Tł	-3:Ne	-1: sli	1: slightly	3: positiv	5: The	4	Created number of new jobs
Reduce CO2 emission		3		ŏŏ	ne mest n	3:Negati <mark>ve</mark> im	slightlymega	htly p ositive	∩0 <u>∎</u> .	ment	5 6	
High energy consumption during manufactured			-1	Possibilty of	egative impact to fac	impact to factor	legative impact to factor	ive impact to factor	npact to factor	positive impact to facto	7 8 9	Material import dependency

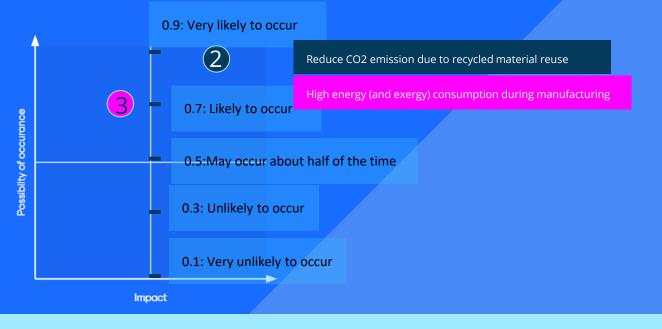

Impact scale

Impact and possibility of indicators to the project

Source: Project risk analysis and management guide 2nd edition (2007)

Impact and possibility of indicators to the project

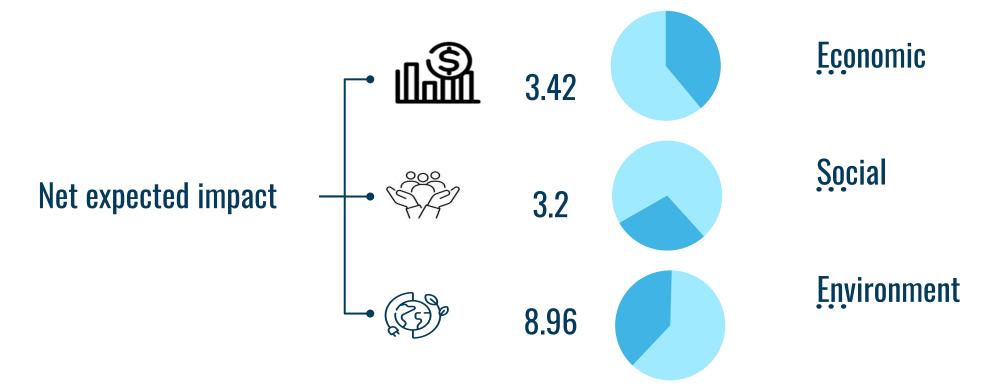
Impact and possibility between indicators to understand their interaction


What is impact of increased waste avoided in ton can be affected indicators below?


Affect this/ How does this	Increased waste avoided in Ton	Reduce CO2 emission	High energy consumption during manufactured		courance		(3		2		 Reduce CO2 emission due to recycled material High energy (and exergy) consumption during man
ncreased waste avoided n Ton	5				Possibilty of oc	-5: The	-3:N	-1: sli	∎ 1: slig	3: po	5: The	
educe CO2 mission	3	3				most	3:Negative imp	slightly negati	1: slightly positiv	positive impac	e most positiv	
High energy consumption	-1		-1			negative	act to		e	+	CD CD	
during manufactured						impact	factor	mpact to factor	impact to factor	to factor	impact to	
						to factor		factor	ctor		factor	

Impact and possibility between indicators to understand their interaction

What is a probality of occurance and impact of Ton of waste avoided can be effected indicators below?


The probability of impacting from indicator to other indicators	Increased waste avoided in ton (0.9)	Reduce CO2 emission (0.7)	High energy consumption during manufactured (0.7)
Increased waste avoided in Ton	1		
Reduce CO2 emission	0.9	1	
High energy consumption during manufactured	0.7		1

Reference Paper: "A new look at the cross-impact matrix and its application in futures studies", K.Chao , May 2008

Dashboard of net expected impact from the cross impact matrices

Conclusions, study limitation and future research

- No standardized threshold defining impact value which require action plan
- Challenges remain in comprehensively capturing cause-and-effect relationships for some indicators, necessitating careful interpretation.
 - All impactful indicators will be retained as critical variables for incorporation into future dynamic model studies.

\bullet \bullet \bullet

Thank you

Industrial Dynamics: applications to the PET process in the tire industry

Henri Sourgou, Arnaud Diemer University of Clermont Auvergne, CERDI (CNRS-IRD)

GREENDEAL, CIRCULAR ECONOMY AND INDUSTRIAL ECOLOGY SYMPOSIUM

December 5th & 6th , 2024 Clermont-Ferrand

Introduction

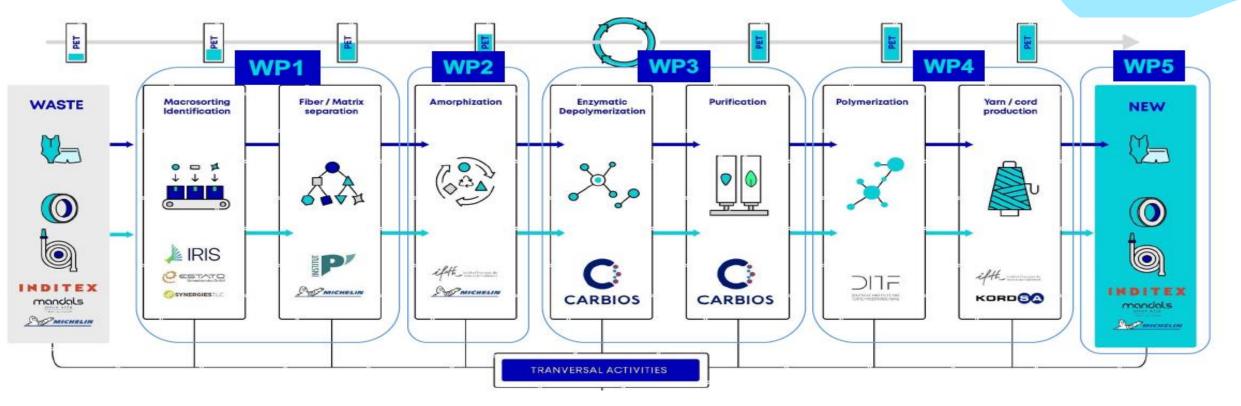
- Polyethylene terephthalate (PET) is widely used in plastics and textiles. Every year in the world, over 20 Million tons of complex waste (textile, tire, hose, ...) is produced;
- Most complex waste is incinerated or landfilled due to the lack of viable recycling solutions;
- Contributing to over 2.06 million tons of CO2eq emissions, soil, and water contamination leading to health problems.

Introduction

- The Whitecycle which is a lab-scale project was created to tackle the landfill and incineration of PET in complex waste;
- Then, 2 tons of waste will be used to produce 3 highly technical products containing recycled PET (r-PET) notably, 100 tires, 1,500 m of hoses, and 400m² of textile;

By 2030, the project aims to recycle 2 Million tons of PET per year, reduce
 2.06 Million tons CO2eq, and avoid 1.8 Million tons of PET landfilling.

Research question and objectives


- How can System Dynamics (SD) modeling help to minimize environmental, social, and economic adverse impacts of PET recycling and to foster circular economy of PET recycling (rPET) supply chain?
- Objectives:
 - Develop an experimental model to describe the complexity of interactions in the rPET supply chain (experimental model approach and computer use);
 - * Identify the different inputs used and outputs in the recycling process;
 - Create more successful management policies and structure of rPET supply chain to minimize the environmental, social, and economic costs of PET recycling.

Theoretical Foundations

- According to Forrester, 1961 in Industrial Dynamics, the different management components interact and lead to the dynamic behavior of the overall system
- These components are interrelated by a flow of information, money, orders, and material, ... (Forrester, 1961). So, the change in one component influences others (information feedback control theory) (Meadows, 2008);
- Therefore, the manager's actions, decisions, shocks, and delays in the manufacturing system components are determinants for its growth, stability, and failure (the place of decision-making in industry analysis);
- The continual and non-linear process is a characteristic of most of business activities such as the PET recycling value chain which is based on circularity.

Methodology and data

 We apply SD methodology in this study to model the r-PET value chain through the organization of stakeholders by Work Packages (WP) in the below picture:

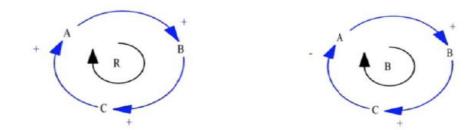


Figure 1: PET recycling activities per WP

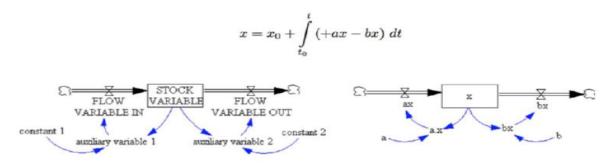
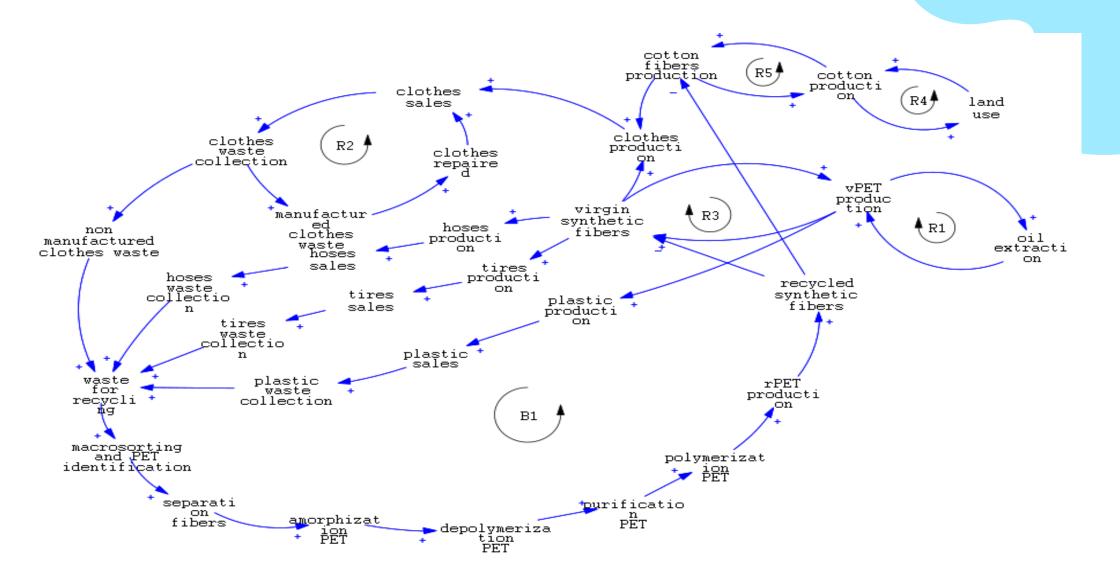
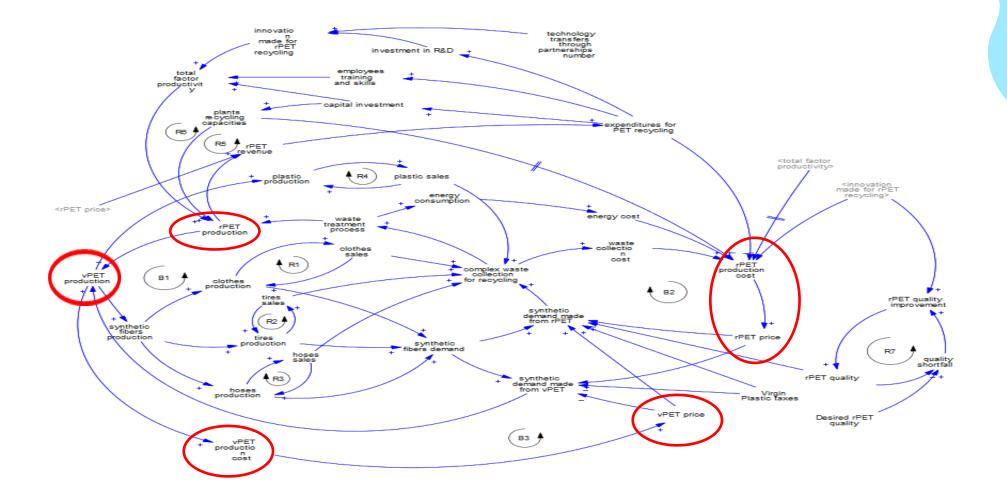

Methodology and Data

Figure 2: System Dynamics (SD) approach

Causal Loop Diagrams (CLD)

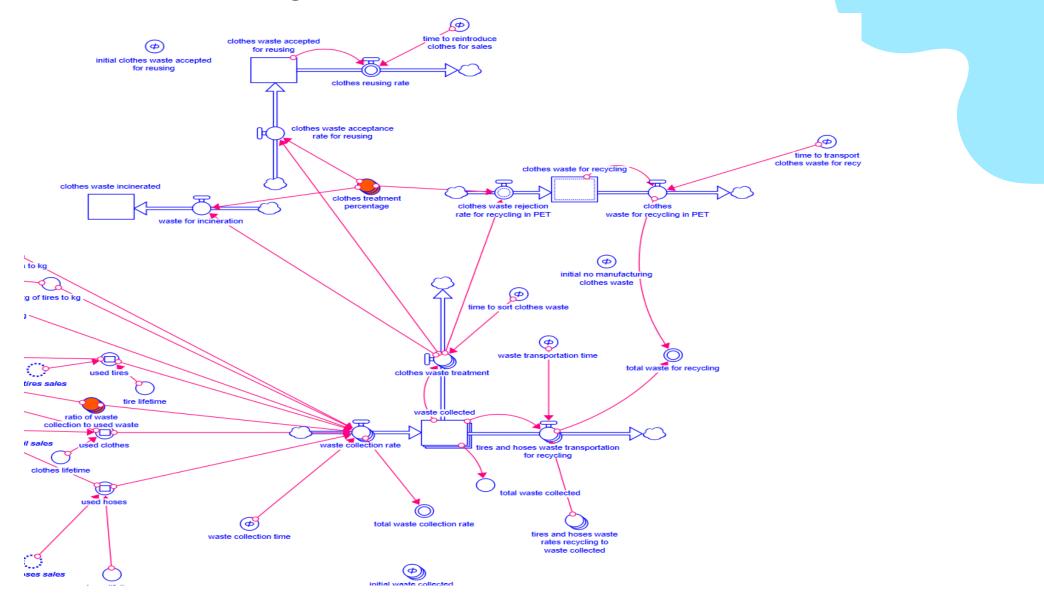


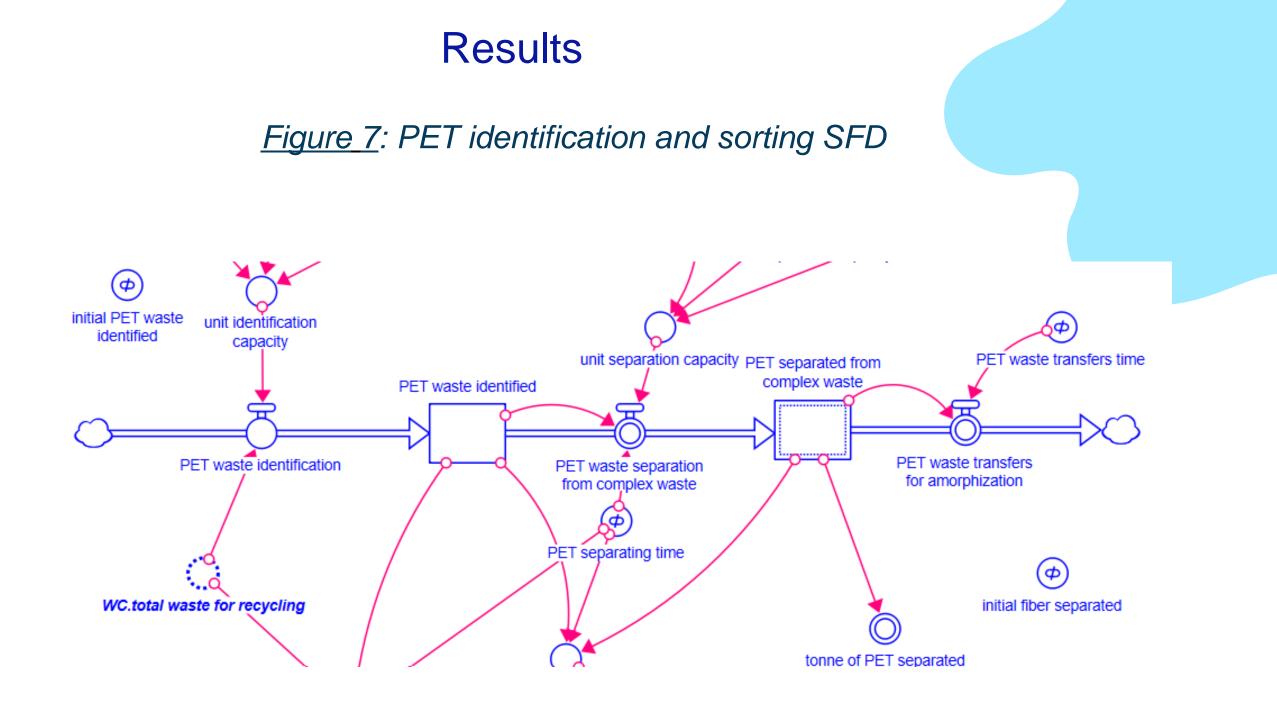
Stock and Flow Diagrams (SFD)



• Data must be provided from lab-scale experiences of waste treatments by stakeholders


Figure 3: PET supply chain organization


<u>Figure 4</u>: the economic value of the rPET supply chain



<u>Figure 5</u>: environment and social impacts of the rPET supply chain

<u>Figure 6</u>: Waste collection SFD

Conclusion

- The model development is still progressing and data acquisition from the labscale experience will come to improve the model's robustness
- Based on ID of Forrester, the model in progressing aims to describe the structure of the rPET supply chain and to measure the impacts associated to waste recycling
- The qualitative description shows PET recycling from complex waste is associated with environmental, social, and economic impacts such as emissions, employment, revenue, investment
- Then, the challenge of the White cycle project is to propose innovative and transformative innovations that minimize the negative impacts, reinforce the positive impacts of the supply chain and make the rPET more competitive than vPET.

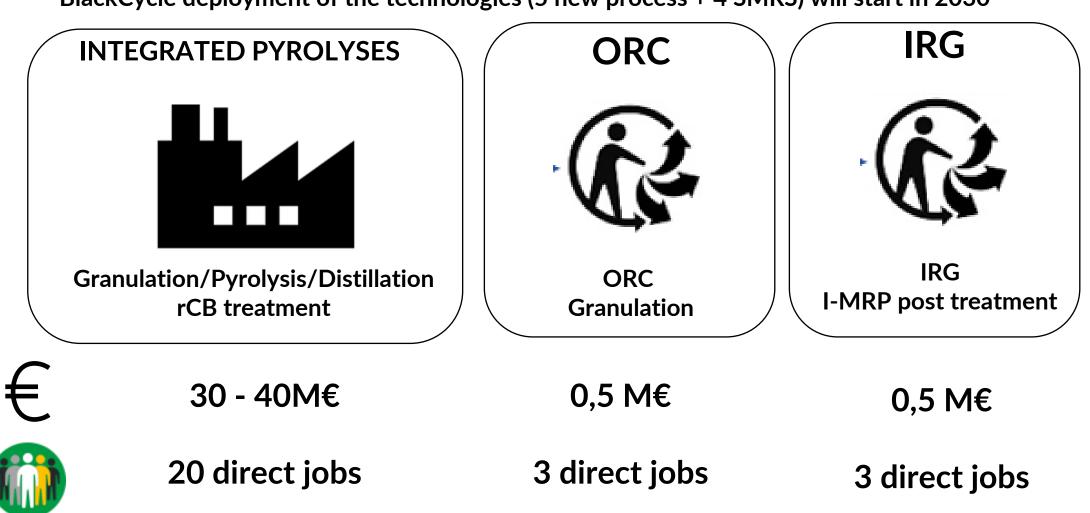
D PÔLE DE COMPÉTITIVITÉ CHIMIE, INDUSTRIES DE PROCÉDÉS ET ENVIRONNEMENT

Rond table

Margarita DORATO – Michelin

Jean-Philippe FAURE – Aliapur

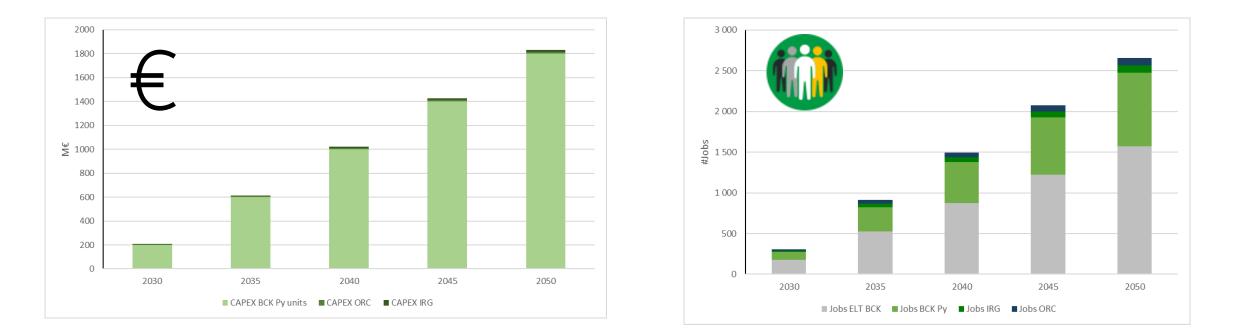
Thibaud Herbst – Michelin



Tipawan Durand - UCA

GREENDEAL, CIRCULAR ECONOMY AND INDUSTRIAL ECOLOGY SYMPOSIUM

CLERMONT-FERRAND 5-6 DÉCEMBRE 2024 The full business model is robust and fullfils the technical, economical and environmental requirements identified as destructive criterias.



BlackCycle deployment of the technologies (5 new process + 4 SMRS) will start in 2030

This new value chain will create a new business of tyre recycling in EU, which will create jobs and private investment across Europe

Investment up to 1,8B€ and created up to 900 direct jobs and ~1500 indirect jobs

BLACKCYCLE is a POWERFUL tool to create a MASSIVE tyre Circular Economy but...

Other than Social acceptance, **5** Non technical barriers for the industrial scale-up

Availability of ELT : in competition with other recovery types

Recognition of Pyrolysis as material recovery process

Industrial Investment and ramp-up:

- Investment is needed to create the capacity of ELT transformation
 - The productivity during the ramp up (2 years?) won't be optimized

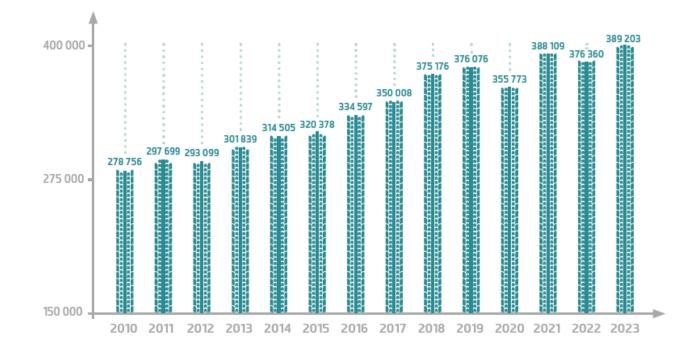
Waste Status : This status of "waste" creates numerous administrative and financial complications, both for transport, transformation (recycling), trade and use of materials

Identified domains where there could be a **lack of economic attractiveness** of products with more expensive SRM.

MICHELIN

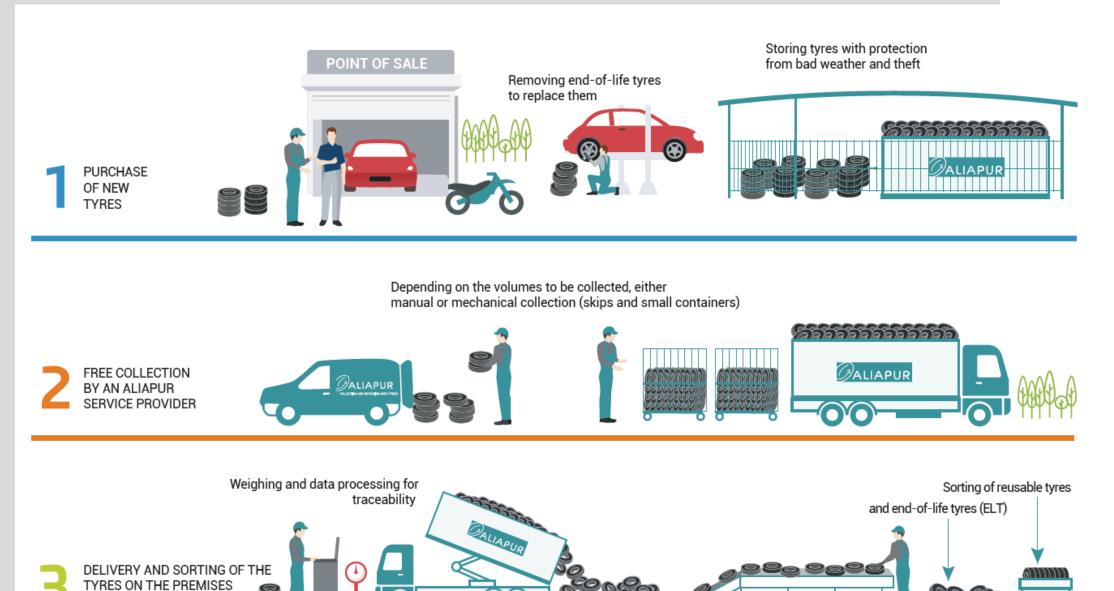
Eco-organization specialized in the collection and recycling of tires in France.Created in 2003 by **GRIDGESTONE Ontinental**

Keys data

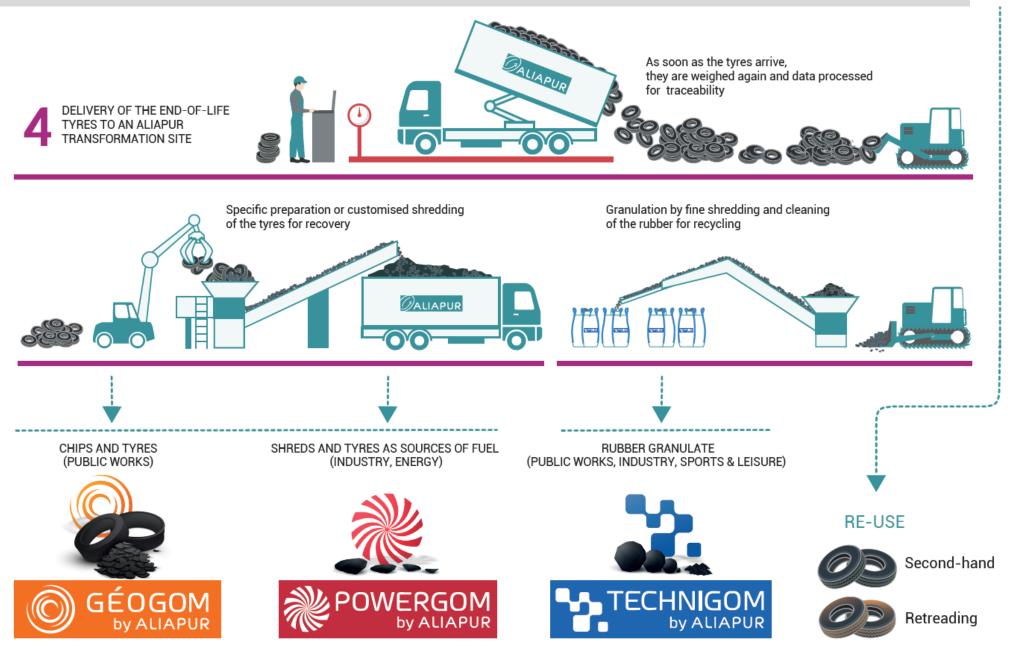


Q 32 534 PROFESSIONNELS DE L'AUTOMOBILE

BAR SEC.


Evolution of collection in tons

Recycling tyres : how does it work ?


OF THE COLLECTOR

Recycling tyres : how does it work ?

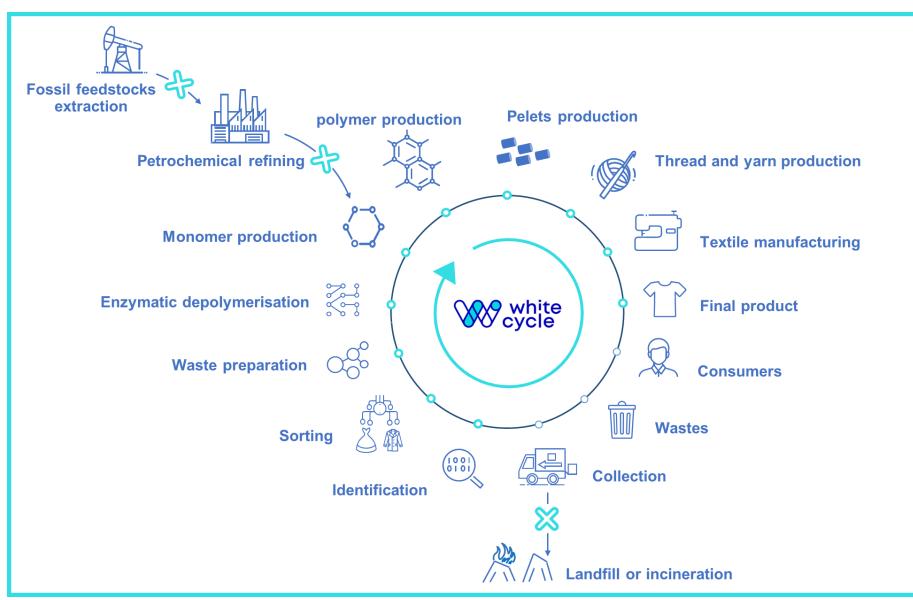
D PÔLE DE COMPÉTITIVITÉ CHIMIE, INDUSTRIES DE PROCÉDÉS ET ENVIRONNEMENT

Rond table

Margarita DORATO – Michelin

Jean-Philippe FAURE – Aliapur

Thibaud Herbst – Michelin


Tipawan Durand - UCA

GREENDEAL, CIRCULAR ECONOMY AND INDUSTRIAL ECOLOGY SYMPOSIUM

CLERMONT-FERRAND 5-6 DÉCEMBRE 2024

WhiteCycle : a circular economy initiative

D PÔLE DE COMPÉTITIVITÉ CHIMIE, INDUSTRIES DE PROCÉDÉS ET ENVIRONNEMENT

Rond table

Margarita DORATO – Michelin

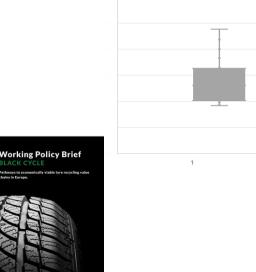
Jean-Philippe FAURE – Aliapur

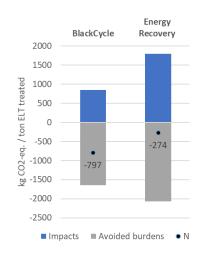
Thibaud Herbst – Michelin

Tipawan Durand - UCA

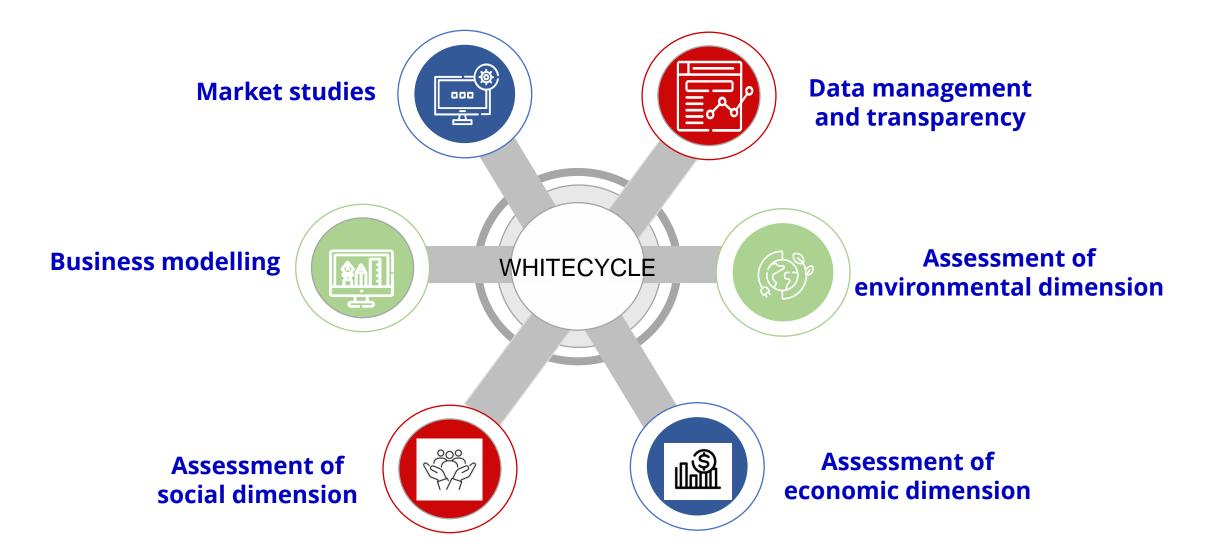
GREENDEAL, CIRCULAR ECONOMY AND INDUSTRIAL ECOLOGY SYMPOSIUM

CLERMONT-FERRAND 5-6 DÉCEMBRE 2024


Blackcycle value chain is economic and environmentally viable


- Analytic and testing approaches led to a positive HSE conclusions. No specific issue identified in the Blackcycle value chain.
- -66% BlackCycle value chain significantly reduces climate change (GHG) impacts compared to energy recovery

- Social licence to operate
- Policy brief



LCA, social-LCA, LCC, Market studies and business modelling

Be part of the change!

Your opinion matters! Share your thoughts on recycled plastic products made with rPET (recycled polyethylene terephthalate).

Online 15 minutes Survey

D PÔLE DE COMPÉTITIVITÉ CHIMIE, INDUSTRIES DE PROCÉDÉS ET ENVIRONNEMENT

Rond table

Margarita DORATO – Michelin

Jean-Philippe FAURE – Aliapur

Thibaud Herbst – Michelin

Tipawan Durand - UCA

GREENDEAL, CIRCULAR ECONOMY AND INDUSTRIAL ECOLOGY SYMPOSIUM

CLERMONT-FERRAND 5-6 DÉCEMBRE 2024